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Abstract. We examine the problem of damage spreading in the off-equilibrium mode coupling
equations. This study is conducted for the sphericalp-spin model introduced by Crisanti, Horner
and Sommers. Forp > 2 we show the existence of a temperature transitionT0 well above any
relevant thermodynamic transition temperature. AboveT0 the asymptotic damage decays to zero
while belowT0 it decays to a finite value independent of the initial damage. This transition is
stable in the presence of asymmetry in the interactions. We discuss the physical origin of this
peculiar phase transition which occurs as a consequence of the nonlinear coupling between the
damage and the two-time correlation functions.

The theoretical understanding of the dynamical behaviour of glasses is a long outstanding
problem in statistical physics which has recently revealed new aspects related to the
underlying mechanism responsible of the glass transition [1, 2]. The scenario for the
dynamical behaviour of glasses can be summarized in two different temperatures which
separate three different regimes. In the high-temperature regimeT > Td the system
behaves as a liquid and is described very well by the mode-coupling equations of Götze
in the equilibrium regime [3]. A crossover takes place atTd where there is a dynamical
singularity and the correlation functions do not decay to zero in the infinite-time limit
(ergodicity breaking). This dynamical singularity is a genuine mean-field effect which turns
out to be a crossover temperature when activated processes are taken into account. Below
Td the relaxation time (or viscosity) starts to grow dramatically fast and seems to diverge
at Ts where the configurational entropy apparently vanishes. The essentials of this scenario
have been corroborated in the context of mean-field spin glasses, and in particular in those
models with a one-step replica symmetry breaking transition [4].

The purpose of this paper is the study of the damage spreading in mode-coupling theory.
Damage spreading is the study of the time propagation of a perturbation or damage in the
initial condition of a system. This dynamical effect has deserved considerable attention in
the past (especially in the context of dynamical systems, for instance, networks of Boolean
automata [5]) because it allows us to explore the structure of the phase space of the system.
To investigate damage spreading we consider two random initial configurations{σi, τi} with
a given initial distanceD0 for two identical systems which evolve under identical noise
realizations and compute the distanceD(t) as a function of time. Of particular interest
is the asymptotic long-time behaviour of the distanceD(t), i.e. D∞ = limt→∞D(t). In
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general, three different regimes can be distinguished. A high-temperature regimeT > T0

whereD∞ = 0 independently of the initial distanceD0. A intermediate regimeT1 < T < T0

whereD∞ = D∞(T ) is not zero but independent of the initial distance. And finally a low-
temperature regimeT < T1 whereD∞ = D∞(T ,D0) depends on both temperature and
initial distance. Although it is widely believed thatT1 corresponds to a thermodynamic
phase transition it is not clear what the physical meaning ofT0 is. Here we will show the
existence of the temperatureT0 in glasses well aboveTd and Ts in the high-temperature
phase. We show that this new transition is a consequence of the nonlinear coupling between
the damage and the corresponding two-time correlation function. This effect is an essential
ingredient of the mode-coupling equations and should be generally valid even beyond the
mean-field limit. We believe the appearance of this damage transition is a quite general
result in glassy models (with and without disorder) where the scenario of Götze for mode-
coupling transitions is valid.

The simplest solvable model described by the off-equilibrium mode-coupling equations
is the sphericalp-spin glass model [6]. In this case, the configurations are described by
N continuous spin variables{σi; 1 6 i 6 N} which satisfy the spherical global constraint∑N

i=1 σ
2
i = N . The Langevin dynamics of the model is given by,

∂σi

∂t
= Fi({σ })− µσi + ηi (1)

whereFi is the force acting on the spinσi due to the interaction with the rest of the spins,

Fi = −∂H
∂σi
= 1

(p − 1)!

∑
(i2,i3,...,ip)

J
i2,i3,...,ip
i σi2σi3 . . . σip (2)

andH is a Hamiltonian. TheJ
i2,i3,...,ip
i are quenched random variables with zero mean and

variancep!/(2Np−1) which we take to be symmetric under permutation of the different
superindices. The calculations presented here can be easily generalized to asymmetric
couplings [7]. Obviously, in this last case there is no energyH which drives the system
to thermal equilibrium. The termµ in equation (2) is a Lagrange multiplier which ensures
that the spherical constraint is satisfied at all times and the noiseη satisfies the fluctuation–
dissipation relation〈ηi(t)ηj (s)〉 = 2T δ(t − s)δij where〈· · ·〉 denotes the noise average.

We define the overlap between two configurations of the spinsσ, τ by the relation
Q = 1

N

∑N
i=1 σiτi so the Hamming distance between these two configurations is

D = 1−Q
2

(3)

in such a way that identical configurations have zero distance and opposite configurations
have maximal distance. Then we consider two copies of the system{σi, τi} which evolve
under the same noise (1) but with different initial conditions. Here we restrict ourselves to
random initial configurations (i.e. equilibrium configurations at infinite temperature) with
initial overlapQ(0). The different set of correlation functions which describe the dynamics
of the system are given by

C(t, s) = (1/N)
N∑
i=1

〈σi(t)σi(s)〉 = (1/N)
N∑
i=1

〈τi(t)τi(s)〉 (4)

R(t, s) = (1/N)
N∑
i=1

∂〈σi〉
∂hσi

= (1/N)
N∑
i=1

∂〈τi〉
∂hτi

(5)

Q(t, s) = (1/N)
N∑
i=1

〈σi(t)τi(s)〉 (6)
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wherehσi , h
τ
i are fields coupled to the spinsσi, τi respectively. In what follows we take

the conventiont > s. The previous correlation functions satisfy the boundary conditions,
C(t, t) = 1, R(s, t) = 0, limt→(s)+ R(t, s) = 1 while the two-replica overlapQ(t, s) defines
the equal time overlapQd(t) = Q(t, t) which yields the Hamming distance at equal times
or damageD(t) through the relation (3). Following standard functional methods [8, 9] it is
possible to write a closed set of equations for the previous correlation functions,
∂C(t, s)

∂t
+ µ(t)C(t, s) = p

2

∫ s

0
duR(s, u)Cp−1(t, u)

+p(p − 1)

2

∫ t

0
duR(t, u)C(s, u)Cp−2(t, u) (7)

∂R(t, s)

∂t
+ µ(t)R(t, s) = δ(t − s)+ p(p − 1)

2

∫ t

s

duR(t, u)R(u, s)Cp−2(t, u) (8)

∂Q(t, s)

∂t
+ µ(t)Q(t, s) = p

2

∫ s

0
duR(s, u)Qp−1(t, u)

+p(p − 1)

2

∫ t

0
duR(t, u)Q(u, s)Cp−2(t, u) (9)

while the Lagrange multiplierµ(t) and the diagonal correlation functionQd(t) obey the
equations,

µ(t) = T + p
2

2

∫ t

0
duR(t, u)Cp−1(t, u) (10)

1

2

∂Qd(t)

∂t
+ µ(t)Qd(t) = T + p

2

∫ t

0
duR(t, u)Qp−1(t, u)

+p(p − 1)

2

∫ t

0
duR(t, u)Q(t, u)Cp−2(t, u). (11)

This set of equations is quite involved. For the correlationC and response functions
R (equations (7), (8) and (10)) several results are known, in particular their behaviour in
the stationary regime (where time translational invariance is satisfied and the fluctuation–
dissipation theorem is obeyed) as well as in the ageing regime [9].

A first glance at equations (9), (11) reveals that the overlapQ(t, s) and its diagonal
partQd(t) are coupled to each other through the correlationC(t, s) and response function
R(t, s). The trivial solutionQ(t, s) = C(t, s) andQd(t) = 1 corresponds to the case where
the initial conditions are the same,Qd(0) = 1 and the distanceD(t) = 0 for all times.
This solution (hereafter denoted by HT) is reached asymptotically by the dynamics for high
enough temperatures. The typical time needed to reach that solution grows if temperature
decreases. At a given temperature (which we identify withT0) there is an instability in the
dynamical equations (9), (11) and the asymptotic solution differs from the HT one. We
did not succeed in finding an explicit expression forT0 but we have been able to show its
existence and find lower and upper bounds for its value.

To show the existence ofT0 we focus on the high-temperature FDT regime(t−s)/t � 1
with t, s both large andT R(t, s) = T R(t − s) = ∂C(t−s)

∂s
. Writing Q(t, s) = Qd(s)Q̂(t, s),

using the inequalitieŝQ(t, s) 6 C(t − s), ∂Qd(t)

∂t
> 0 and inserting these results into (9) it

is possible to get the following inequality,

T (1−Qd(t))+ βQd(t)

2
(Q

p−2
d (t)− 1) > 1

2

∂Qd(t)

∂t
> 0. (12)

A trivial solution which always satisfies that inequality isQd(t) = 1. Expanding
Qd(t) aroundQd(t) = 1 it can be checked that any previous inequality is violated if
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T <
√
(p − 2)/2. This yields a lower bound for the temperature at which there is an

instability in the condition (12), leading toT0 >
√
(p − 2)/2. Note that, to obtain this last

inequality, it is crucial to suppose thatQd(t) is a monotonous increasing function of time.
This assumption breaks down belowT0, hence our argument applies only in the high-T

regime above the instability.
On the other hand, a linear stability analysis of equations (9), (11) around the HT

solution,Qd(t) = 1− εf (t), Q(t, s) = C(t − s)− εg(t, s) wheref (0) = 1, g(t, t) = f (t)
yields for equation (11) in the larget limit,

1

2

∂f

∂t
= −

(
T − pβ

2

)
f − βp

∫ t

0
duCp−1(t − u)∂g(t, u)

∂u
. (13)

Finally, the inequality∂g(t,u)
∂u
> 0 yields,√

p

2
− 16 T0 6

√
p

2
. (14)

As said previously, it is very difficult to find an explicit expression forT0. The reason is
that bothQd(t) andQ̂(t, s) (or equivalently,f (t) andg(t, s) in the linear stability analysis)
are not related by any fluctuation–dissipation relation in the long-time limit. Consequently,
the analysis of the dynamic instability turns out to be more difficult.

Note that for the particular casep = 2 the inequality (14) yieldsT0 6 1. Taking into
account that (14) was derived under the assumptionT0 > Ts = 1 that yieldsT0 = 1. The
simpler casep = 2 has been already considered by Stariolo [10]

In the general casep > 3 a dynamical instability appears at temperatures well above any
relevant thermodynamic temperature. In particular, forp = 3, numerical integration of the
dynamical equations as well as the use of series expansions (see below) yields a dynamical
transition atT0(p = 3) = 1.04± 02 in agreement with the inequalities (14). Note thatT0

is much higher thanTd(p = 3) = 0.6125 orTs(p = 3) = 0.5 (in generalTs goes like
1/
√

2 log(p) for p large butTd converges to the finite value 1/
√

2e [8]). The relaxation
time τrelax associated with the decay of the distanceD(t) to zero diverges according to a
power lawτrelax' (T − T0)

−γ with γ ' 1.1± 0.1.
It is important to note thatT0 is not related to any thermodynamic singularity. In

the largep limit the inequality (14) yieldsT0 →
√
p

2 which gives a temperature much

above the temperatureTTAP where an exponentially large number of states start to appear
(TTAP →

√
log(p)). Indeed, the origin of the damage spreading transition is purely

dynamical and is not related to any thermodynamic singularity or even to the existence
of an exponentially large number of metastable states in the system.

We now discuss the behaviour of the asymptotic distance belowT0. In principle
a new transition atTd (which we identify asT1) is expected inQd(t) because the
correlationC develops the mode-coupling instability. Our better numerical estimates for the
asymptotic distanceD∞ suggest that no singularity is found atTd but we cannot exclude
this possibility from theoretical arguments. It is very difficult to get a precise estimate of
the asymptotic distance from the set of equations (7)–(11). A possible way to investigate
the asymptotic long-time limit ofQd in the low-temperature regime (i.e. belowT0) is to
integrate numerically the set of dynamical equations (7)–(11). Unfortunately, the CPU
time and the memory needed to integrate them grows very fast with the maximum timet

(approximately liket2). Consequently, it is very difficult to extrapolate the numerical data
to the infinite-time limit.

An alternative method was recently proposed in [11] were the series expansion for
correlation and response functions was used to investigate the asymptotic long-time limit
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of quantities such as the internal energy. Here we follow [11] but extend their method
within the constrained formalism to include the series expansions for the correlation function
Q(t, s). To this end, we decompose in Taylor series the correlation, the response as well
as the overlap,

C(t, s) =
∞∑
k=0

( k∑
l=0

ckl(t − s)l tk−l
)

(15)

R(t, s) =
∞∑
k=0

( k∑
l=0

rkl(t − s)l tk−l
)

(16)

Q(t, s) =
∞∑
k=0

( k∑
l=0

qkl(t − s)l tk−l
)

(17)

µ(t) =
∞∑
k=0

µkt
k (18)

whereck0 = rk0 = δk0 andQd(t) =
∑∞

k=0 qk0t
k. In this case, it is possible to write some

recurrence relations between the different coefficientsckl, rkl, qkl, µk. The time necessary to
calculate the first coefficients of the series is not very large and takes a few hours in a work
station to reach the first 70 terms of the series†. The radius of convergence of these series
is quite small. To enlarge their radius of convergence we have used Padé approximants
to get an estimate of the asymptotic value of the distanceQd(∞). Although the method
works very well in case of the asymptotic value of the energy [11] (which depends on the
Lagrange multiplierµ via the relationµ = T −pE(t)) it is less effective for the asymptotic
distance. The reason is that, whileµ(t) is always a monotonous increasing function of
time, Qd(t) is not. In fact, belowT0 the overlapQd(t) has a maximum as a function of
time for some values ofT and the initial conditionQd(0). Consequently, the complex
functionQd(z) turns out to have zeros close to the real axis and therefore a smaller radius
of convergence of the Padé. It is still possible, however, to obtain some estimates for the
asymptotic distance. Numerical integrations of the dynamical equations have been used to
check that our extrapolations in the infinite-time limit are correct.

Some of our results are shown in figures 1 and 2 for casep = 3. We have studied three
different initial conditions: (a) anticorrelated random initial conditions withQd(0) = −1,
(b) uncorrelated random initial conditions withQd(0) = 0 and (c) partially correlated
random initial conditions withQd(0) = 0.5. Case (a) was analysed using diagonal
and the first off-diagonal Padé approximants assuming an asymptotic power-law decay
Qd(t) = Qd(∞)+ At−γ and finding estimates for the exponentγ using approximants for
tQ′′d(t)/Q

′
d(t). Cases (b) and (c) turned out to be more difficult to analyse due to the small

radius of convergence of the series as well as to the presence of poles in the Padés.
The behaviour ofQd(t) for case (b) is shown in figure 1 for different temperatures.

The full curves correspond to the numerical integration of the dynamical equations while
the broken curves are the reconstructed functionsQd(t) obtained from the Padé analysis.
Note the presence of a maximum inQd(t) for several different temperatures. This feature
is a consequence of the nonlinear character (inQ) of equations (9), (11) forp > 3 and is
absent forp = 2 [10].

Figure 2 shows the asymptotic distanceD∞ for cases (a)–(c) as a function of the
temperature. We find that the asymptotic distance is independent of the initial correlation.
This is an interesting result since one would expect (at least belowTd ) a dependence on

† This is true for casep = 3 while for larger values ofp the computational effort is larger.
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Figure 1. Qd(t) with Qd(0) = 0 as a function of time for different temperatures. From top to
bottomT = 0.9, 0.7, 0.5, 0.3, 0.1. The full curves are the numerical integrations with time step
1t = 0.01 and the broken curves are the reconstructed functions obtained from the Padé analysis.

Figure 2. Asymptotic distanceD∞ for p = 3 obtained from the Padé analysis of the series
expansions for different initial conditionsD0 = 1 (circles),D0 = 0.5 (triangles),D0 = 0.25
(stars). Typical error bars are shown for the last case.
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the initial condition. We have to note that the dependence on the initial conditions is
expected for models with the symmetryσ →−σ and with a simple free energy landscape.
Consequently, the asymptotic distance depends on the initial value ofD0. Here, such
behaviour is only found forp = 2 [10].

In summary, we have studied the spreading of damage in the off-equilibrium mode-
coupling equations. We have explicitly shown the existence of a damage spreading transition
T0 and also found lower and upper bounds for its value. This transition takes place at
very high temperatures. On the other hand, this transition is completely unrelated to the
existence of metastable states in the system. In fact, we have observed that this transition
is quite stable to the inclusion of any degree of asymmetry. Indeed in the asymmetric case
(α = 0 in [7]) we find thatT0 ' 0.71 for p = 3. Consequently, the damage spreading
transition persists in the absence of the spin-glass phase or even in the absence of metastable
states. This result corroborates some results already found for other disordered spin-glass
models [12, 13]. Interestingly, equations (9), (11) show that, only forp > 2, the coupling
between the damageQd(t) and the two-time correlation functionQ(t, s) is nonlinear. This
nonlinear coupling is crucial for the appearance of the damage transitionT0 which is well
aboveTd . We have also shown that belowT0 the asymptotic distance is independent of the
initial distance. This was unexpected since such a dependence has been usually found in
numerical investigations of several spin-glass models [14]. It would be interesting to know
if this result is a direct consequence of the first-order nature of the glass transition. This
and other issues, such as the scaling behaviour of the overlapQ(t, s) in the ageing regime
and the existence of this transition in nondisordered glass forming liquids, are left for future
investigations.
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